a numerical approach for solving a nonlinear inverse di usion problem by tikhonov regularization

نویسندگان

h. molhem

department of physics , faculty of science, islamic azad university, karaj branch, karaj, iran r. pourgholi

school of mathematics and computer sciences, damghan university, p.o.box 36715-364, damghan, iran. m. borghei

department of physics , faculty of science, islamic azad university, karaj branch, karaj, iran.

چکیده

in this paper, we propose an algorithm for numerical solving an inverse non-linear di usion problem. in additional, the least-squares method is adopted to nd the solution. to regularize the resultant ill-conditioned linear system ofequations, we apply the tikhonov regularization method to obtain the stablenumerical approximation to the solution. some numerical experiments con- rm the utility of this algorithm as the results are in good agreement with theexact data.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical approach for solving a nonlinear inverse diusion problem by Tikhonov regularization

In this paper, we propose an algorithm for numerical solving an inverse non-linear diusion problem. In additional, the least-squares method is adopted tond the solution. To regularize the resultant ill-conditioned linear system ofequations, we apply the Tikhonov regularization method to obtain the stablenumerical approximation to the solution. Some numerical experiments con-rm the utility of th...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

A modified VIM for solving an inverse heat conduction problem

In this paper, we will use a modified  variational iteration method (MVIM) for solving an inverse heat conduction problem (IHCP). The approximation of the temperature and the heat flux at  are considered. This method is based on the use of Lagrange multipliers for the identification of optimal values of parameters in a functional in Euclidian space. Applying this technique, a rapid convergent s...

متن کامل

A numerical scheme for solving nonlinear backward parabolic problems

‎In this paper a nonlinear backward parabolic problem in one‎ ‎dimensional space is considered‎. ‎Using a suitable iterative‎ ‎algorithm‎, ‎the problem is converted to a linear backward parabolic‎ ‎problem‎. ‎For the corresponding problem‎, ‎the backward finite‎ ‎differences method with suitable grid size is applied‎. ‎It is shown‎ ‎that if the coefficients satisfy some special conditions‎, ‎th...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
نظریه تقریب و کاربرد های آن

جلد ۷، شماره ۲، صفحات ۳۹-۵۴

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023